NWPF

News ArchivesRead News

Gene-Silencing Study Finds New Targets for Parkinson's

Thursday November 28, 2013

Imperial Valley News - Scientists at the National Institutes of Health have used RNA interference (RNAi) technology to reveal dozens of genes which may represent new therapeutic targets for treating Parkinson’s disease. The findings also may be relevant to several diseases caused by damage to mitochondria, the biological power plants found in cells throughout the body.

“We discovered a network of genes that may regulate the disposal of dysfunctional mitochondria, opening the door to new drug targets for Parkinson’s disease and other disorders,” said Richard Youle, Ph.D., an investigator at the National Institute of Neurological Disorders and Stroke (NINDS) and a leader of the study. The findings were published online in Nature. Dr. Youle collaborated with researchers from the National Center for Advancing Translational Sciences (NCATS).

NIH scientists used RNA interference to find genes that interact with parkin (green), a protein that tags damaged mitochondria (red). Mutations in parkin are linked to Parkinson’s disease and other mitochondrial disorders. Courtesy of Youle lab, NINDS, Bethesda, Md.

Mitochondria are tubular structures with rounded ends that use oxygen to convert many chemical fuels into adenosine triphosphate, the main energy source that powers cells. Multiple neurological disorders are linked to genes that help regulate the health of mitochondria, including Parkinson’s, and movement diseases such as Charcot-Marie Tooth Syndrome and the ataxias.

Some cases of Parkinson’s disease have been linked to mutations in the gene that codes for parkin, a protein that normally roams inside cells, and tags damaged mitochondria as waste. The damaged mitochondria are then degraded by cells’ lysosomes, which serve as a biological trash disposal system. Known mutations in parkin prevent tagging, resulting in accumulation of unhealthy mitochondria in the body.

RNAi is a natural process occurring in cells that helps regulate genes. Since its discovery in 1998, scientists have used RNAi as a tool to investigate gene function and their involvement in health and disease.

Dr. Youle and his colleagues worked with Scott Martin, Ph.D., a coauthor of the paper and an NCATS researcher who is in charge of NIH’s RNAi facility. The RNAi group used robotics to introduce small interfering RNAs (siRNAs) into human cells to individually turn off nearly 22,000 genes. They then used automated microscopy to examine how silencing each gene affected the ability of parkin to tag mitochondria.

“One of NCATS’ goals is to develop, leverage and improve innovative technologies, such as RNAi screening, which is used in collaborations across NIH to increase our knowledge of gene function in the context of human disease,” said Dr. Martin.

For this study, the researchers used RNAi to screen human cells to identify genes that help parkin tag damaged mitochondria. They found that at least four genes, called TOMM7, HSPAI1L, BAG4 and SIAH3, may act as helpers. Turning off some genes, such as TOMM7 and HSPAI1L, inhibited parkin tagging whereas switching off other genes, including BAG4 and SIAH3, enhanced tagging. Previous studies showed that many of the genes encode proteins that are found in mitochondria or help regulate a process called ubiquitination, which controls protein levels in cells.

Next the researchers tested one of the genes in human nerve cells. The researchers used a process called induced pluripotent stem cell technology to create the cells from human skin. Turning off the TOMM7 gene in nerve cells also appeared to inhibit tagging of mitochondria. Further experiments supported the idea that these genes may be new targets for treating neurological disorders.

“These genes work like quality control agents in a variety of cell types, including neurons,” said Dr. Youle. “The identification of these helper genes provides the research community with new information that may improve our understanding of Parkinson’s disease and other neurological disorders.”

The RNAi screening data from this study are available in NIH’s public database, PubChem, which any researcher may analyze for additional information about the role of dysfunctional mitochondria in neurological disorders.

“This study shows how the latest high-throughput genetic technologies can rapidly reveal insights into fundamental disease mechanisms,” said Story Landis, Ph.D., director of the NINDS. “We hope the results will help scientists around the world find new treatments for these devastating disorders.”

(28 Nov. 2013). Imperial Valley News. Gene-silencing study finds new targets for Parkinson's disease. www.imperialvalleynews.com.

Recent News

Oct 18 - Brain disconnections may contribute to Parkinson's hallucinations
Oct 18 - Fighting Parkinson's disease through dance
Oct 17 - Scientists Identify Structure of PINK1, Key Parkinson’s-protective Protein
Oct 17 - Diabetes drug cuts Parkinson's risk by 28 percent, study finds
Oct 10 - Advances in Brain Pacemaker Reduces Tremors, Helps Parkinson's Sufferers Live a More Normal Life
Oct 10 - Medical History Could Help Predict Parkinson's Disease Risk Long Before Diagnosis
Oct 3 - Changes in Olfactory Bulb Explain Loss of Smell in Early Stages of Parkinson’s Disease, Study Finds
Oct 3 - Sleep Disturbances May Worsen Motor Symptoms in Parkinson’s Disease, Study Suggests
Sep 12 - Australian Researchers Develop New Diagnostic Tool to Spot Early Signs of Parkinson’s
Sep 11 - GeneFo Webinar to Focus on Using Humor to Manage Parkinson’s Disease
Sep 6 - Parkinson’s and the ‘D’ word
Sep 6 - Compounds in Asthma Drugs Might Be Used as Parkinson’s Treatment
Sep 5 - AstraZeneca Joins Takeda, Berg to Advance Development of Parkinson’s Disease Therapies
Sep 1 - Stem Cell Transplant Trial in Parkinson’s Patients Planned After Test in Japan Succeeds in Monkeys
Sep 1 - Titan to Start Phase 1/2 Study of Subdermal Implant to Deliver Requip to Parkinson’s Patients
Aug 30 - FDA Refuses Acorda’s Inbrija New Drug Application Due to Manufacturing Questions
Aug 23 - Support Groups: Are They for You?
Aug 22 - Internet Visits with Parkinson’s Specialist Can Be as Effective as In-person Visits, Trial Finds
Aug 21 - Cavion’s New CMO to Lead Cav3 Platform Development for Neurological Diseases
Aug 15 - Singing Helps Early-stage Parkinson’s Patients Retain Speech, Respiratory Control, Studies Show