NWPF

News ArchivesRead News

How Pesticides Can Cause Parkinson's

Friday July 19, 2013

Foreign chemicals may prevent the brain from disposing of its own toxic waste
Melinda Wenner Moyer

Scientific American - Many studies over the past decade have pointed to pesticides as a potential cause of Parkinson's disease, a neurodegenerative condition that impairs motor function and afflicts a million Americans. Yet scientists have not had a good idea of how these chemicals harm the brain. A recent study suggests a possible answer: pesticides may inhibit a biochemical pathway that normally protects dopaminergic neurons, the brain cells selectively attacked by the disease. Preliminary research also indicates that this pathway plays a role in Parkinson's even when pesticides are not involved, providing an exciting new target for drug development.

Past studies have shown that a pesticide called benomyl, which lingers in the environment despite having been banned in the U.S. in 2001 because of health concerns, inhibits the chemical activity of aldehyde dehydrogenase (ALDH) in the liver. Researchers at the University of California, Los Angeles, U.C. Berkeley, the California Institute of Technology and the Greater Los Angeles Veterans Affairs Medical Center wondered whether the pesticide might also affect levels of ALDH in the brain. ALDH's job is to break down DOPAL, a naturally forming toxic chemical, rendering it harmless.

To find out, the researchers exposed different types of human brain cells—and, later, whole zebra fish—to benomyl. They found that it “killed almost half of the dopamine neurons while leaving all other neurons tested intact,” according to lead author and U.C.L.A. neurologist Jeff Bronstein. When they zeroed in on the affected cells, they confirmed that the benomyl was indeed inhibiting the activity of ALDH, which in turn spurred the toxic accumulation of DOPAL. Interestingly, when the scientists lowered DOPAL levels using a different technique, benomyl did not harm the dopamine neurons, a finding that suggests that the pesticide kills these neurons specifically because it allows DOPAL to build up.

Because other pesticides also inhibit ALDH activity, Bronstein speculates that this pathway could help explain the link between Parkinson's and pesticides in general. What is more, research has identified high DOPAL activity in the brain of Parkinson's patients who have not been highly exposed to pesticides, so it is possible that this biochemical cascade is involved in the disease process regardless of its cause. If that is true, then drugs that block or clear DOPAL from the brain could prove to be promising treatments for Parkinson's.

Recent News

Aug 22 - Parkinson's Disease Could Be Diagnosed Through Eye Check, Mice Help Researchers In Further Study
Aug 22 - Machine learning to unlock Parkinson's disease mystery
Aug 21 - Cognitive control plays major role in Parkinson’s Gait
Aug 15 - 'I've Never Felt Constrained': After Parkinson's Diagnosis, Chestnut Hill Man Turns To Drumming
Aug 11 - Virtual reality and treadmill training could help prevent falls in older adults
Aug 9 - New laboratory model replicates early phase of Parkinson's before onset of motor symptoms
Aug 8 - Marshall University Scientists Develop A New Approach For Parkinson’s Disease Therapy
Aug 5 - Cambuslang woman diagnosed with Parkinson's at 42 is set to trek through Alps
Aug 4 - Active Music Therapy May Be Beneficial in Parkinson's
Aug 1 - Mini-Brains? Scientists Grow Rice Grain-Sized Brains to Aid Parkinson’s Research
Jul 30 - Lab method sheds light on how genetic mutations cause inherited Parkinson's disease
Jul 27 - Indicators of Parkinson's disease risk found in unexpected places
Jul 24 - Parkinson's: Mutant gene interaction may pave the way for new treatments
Jul 22 - Boxing training used to fight against Parkinson's disease
Jul 17 - Stem cell treatment breakthrough could cure Parkinson’s patients
Jul 14 - Cancer drug shows early promise for Parkinson's disease
Jul 13 - Opinion: Dividing the Caregiving Responsibilities Between Siblings
Jul 12 - Researchers make advance in possible treatments for Gaucher, Parkinson’s diseases
Jul 11 - Parkinson’s Head Trauma Link Looks Even Stronger
Jul 7 - Penn students’ start-up XEED puts wearables to work against Parkinson’s disease