NWPF

News ArchivesRead News

MIT scientists model structure of alpha synuclein protein associated with Parkinson's

Tuesday April 02, 2013

Computer modeling may resolve conflicting results and offer hints for new drug-design strategies

news-medical.net - Clumps of proteins that accumulate in brain cells are a hallmark of neurological diseases such as dementia, Parkinson's disease and Alzheimer's disease. Over the past several years, there has been much controversy over the structure of one of those proteins, known as alpha synuclein.

MIT computational scientists have now modeled the structure of that protein, most commonly associated with Parkinson's, and found that it can take on either of two proposed states - floppy or rigid. The findings suggest that forcing the protein to switch to the rigid structure, which does not aggregate, could offer a new way to treat Parkinson's, says Collin Stultz, an associate professor of electrical engineering and computer science at MIT.

"If alpha synuclein can really adopt this ordered structure that does not aggregate, you could imagine a drug-design strategy that stabilizes these ordered structures to prevent them from aggregating," says Stultz, who is the senior author of a paper describing the findings in a recent issue of the Journal of the American Chemical Society.

For decades, scientists have believed that alpha synuclein, which forms clumps known as Lewy bodies in brain cells and other neurons, is inherently disordered and floppy. However, in 2011 Harvard University neurologist Dennis Selkoe and colleagues reported that after carefully extracting alpha synuclein from cells, they found it to have a very well-defined, folded structure.

That surprising finding set off a scientific controversy. Some tried and failed to replicate the finding, but scientists at Brandeis University, led by Thomas Pochapsky and Gregory Petsko, also found folded (or ordered) structures in the alpha synuclein protein.

Stultz and his group decided to jump into the fray, working with Pochapsky's lab, and developed a computer-modeling approach to predict what kind of structures the protein might take. Working with the structural data obtained by the Brandeis researchers, Stultz created a model that calculates the probabilities of many different possible structures, to determine what set of structures would best explain the experimental data.

The calculations suggest that the protein can rapidly switch among many different conformations. At any given time, about 70 percent of individual proteins will be in one of the many possible disordered states, which exist as single molecules of the alpha synuclein protein. When three or four of the proteins join together, they can assume a mix of possible rigid structures, including helices and beta strands (protein chains that can link together to form sheets).

"On the one hand, the people who say it's disordered are right, because a majority of the protein is disordered," Stultz says. "And the people who would say that it's ordered are not wrong; it's just a very small fraction of the protein that is ordered."

The MIT researchers also found that when alpha synuclein adopts an ordered structure, similar to that described by Selkoe and co-workers, the portions of the protein that tend to aggregate with other molecules are buried deep within the structure, explaining why those ordered forms do not clump together.

Stultz is now working to figure out what controls the protein's configuration. There is some evidence that other molecules in the cell can modify alpha synuclein, forcing it to assume one conformation or another.

"If this structure really does exist, we have a new way now of potentially designing drugs that will prevent aggregation of alpha synuclein," he says.

Source: Massachusetts Institute of Technology

Recent News

May 20 - Book Review: Aging in the Key of Humor
May 19 - Press Release: The Michael J. Fox Foundation for Parkinson's Research Joins Multinational Critical Path for Parkinson's Consortium
May 19 - Congress reaches deal to overhaul chemical regulation
May 16 - Lifestyle: Why Parkinson's disease won't stop me rowing across the Pacific
May 16 - Many biomarkers for PD fail to inform on progression
May 10 - Parkinson's Cell Transplant Shows Good Reinnervation at 24 Years
May 7 - Growing art installation gathers stories of living with Parkinson's
May 5 - New technique can provide better cell transplants against Parkinson's disease
May 2 - What's Good For The Heart Is Good For The Brain
Apr 29 - Press Release: FDA approves first drug to treat hallucinations and delusions associated with Parkinson’s disease
Apr 28 - Dopamine-making neurons can be chemically controlled in animal model of Parkinson's
Apr 25 - Lifestyle: Dating with Disease
Apr 25 - Scientific breakthrough in fight against Parkinson's and Alzheimer's
Apr 20 - Breakthrough Parkinson's disease blood test
Apr 15 - Living with Parkinson's
Apr 12 - Tissue biomarker for dementia with Lewy bodies and Parkinson’s disease
Apr 11 - Yoga for Every Body: Experts say yoga can ease pain and improve mobility for people with neurologic conditions
Apr 9 - Commonly prescribed Parkinson's drugs up risk of compulsive gambling, shopping, binge eating, hypersexuality
Apr 7 - Pfizer and IBM Launch Innovative Research Project to Transform Parkinson's Disease Care
Apr 7 - Parkinson's Drug Highly Effective for Resistant Depression