NWPF

News ArchivesRead News

Parkinsons' Drug Helps Older People to Make Decisions

Sunday March 24, 2013

Science Daily - A drug widely used to treat Parkinson's Disease can help to reverse age-related impairments in decision making in some older people, a study from researchers at the Wellcome Trust Centre for Neuroimaging has shown.

The study, published today in the journal Nature Neuroscience, also describes changes in the patterns of brain activity of adults in their seventies that help to explain why they are worse at making decisions than younger people.

Poorer decision-making is a natural part of the aging process that stems from a decline in our brains' ability to learn from our experiences. Part of the decision-making process involves learning to predict the likelihood of getting a reward from the choices that we make.

An area of the brain called the nucleus accumbens is responsible for interpreting the difference between the reward that we're expecting to get from a decision and the reward that is actually received. These so called 'prediction errors', reported by a brain chemical called dopamine, help us to learn from our actions and modify our behaviour to make better choices the next time.

Dr Rumana Chowdhury, who led the study at the Wellcome Trust Centre for Neuroimaging at UCL, said: "We know that dopamine decline is part of the normal aging process so we wanted to see whether it had any effect on reward-based decision making. We found that when we treated older people who were particularly bad at making decisions with a drug that increases dopamine in the brain, their ability to learn from rewards improved to a level comparable to somebody in their twenties and enabled them to make better decisions."

The team used a combination of behavioural testing and brain imaging techniques, to investigate the decision-making process in 32 healthy volunteers aged in their early seventies compared with 22 volunteers in their mid-twenties. Older participants were tested on and off L-DOPA, a drug that increases levels of dopamine in the brain. L-DOPA, more commonly known as Levodopa, is widely used in the clinic to treat Parkinson's.

The participants were asked to complete a behavioural learning task called the two-arm bandit, which mimics the decisions that gamblers make while playing slot machines. Players were shown two images and had to choose the one that they thought would give them the biggest reward. Their performance before and after drug treatment was assessed by the amount of money they won in the task.

"The older volunteers who were less able to predict the likelihood of a reward from their decisions, and so performed worst in the task, showed a significant improvement following drug treatment," Dr Chowdhury explains.

The team then looked at brain activity in the participants as they played the game using functional Magnetic Resonance Imaging (fMRI), and measured connections between areas of the brain that are involved in reward prediction using a technique called Diffusor Tensor Imaging (DTI).

The findings reveal that the older adults who performed best in the gambling game before drug treatment had greater integrity of their dopamine pathways. Older adults who performed poorly before drug treatment were not able to adequately signal reward expectation in the brain -- this was corrected by L-DOPA and their performance improved on the drug.

Dr John Williams, Head of Neuroscience and Mental Health at the Wellcome Trust, said: "This careful investigation into the subtle cognitive changes that take place as we age offers important insights into what may happen at both a functional and anatomical level in older people who have problems with making decisions. That the team were able to reverse these changes by manipulating dopamine levels offers the hope of therapeutic approaches that could allow older people to function more effectively in the wider community."

Recent News

Oct 18 - Brain disconnections may contribute to Parkinson's hallucinations
Oct 18 - Fighting Parkinson's disease through dance
Oct 17 - Scientists Identify Structure of PINK1, Key Parkinson’s-protective Protein
Oct 17 - Diabetes drug cuts Parkinson's risk by 28 percent, study finds
Oct 10 - Advances in Brain Pacemaker Reduces Tremors, Helps Parkinson's Sufferers Live a More Normal Life
Oct 10 - Medical History Could Help Predict Parkinson's Disease Risk Long Before Diagnosis
Oct 3 - Changes in Olfactory Bulb Explain Loss of Smell in Early Stages of Parkinson’s Disease, Study Finds
Oct 3 - Sleep Disturbances May Worsen Motor Symptoms in Parkinson’s Disease, Study Suggests
Sep 12 - Australian Researchers Develop New Diagnostic Tool to Spot Early Signs of Parkinson’s
Sep 11 - GeneFo Webinar to Focus on Using Humor to Manage Parkinson’s Disease
Sep 6 - Parkinson’s and the ‘D’ word
Sep 6 - Compounds in Asthma Drugs Might Be Used as Parkinson’s Treatment
Sep 5 - AstraZeneca Joins Takeda, Berg to Advance Development of Parkinson’s Disease Therapies
Sep 1 - Stem Cell Transplant Trial in Parkinson’s Patients Planned After Test in Japan Succeeds in Monkeys
Sep 1 - Titan to Start Phase 1/2 Study of Subdermal Implant to Deliver Requip to Parkinson’s Patients
Aug 30 - FDA Refuses Acorda’s Inbrija New Drug Application Due to Manufacturing Questions
Aug 23 - Support Groups: Are They for You?
Aug 22 - Internet Visits with Parkinson’s Specialist Can Be as Effective as In-person Visits, Trial Finds
Aug 21 - Cavion’s New CMO to Lead Cav3 Platform Development for Neurological Diseases
Aug 15 - Singing Helps Early-stage Parkinson’s Patients Retain Speech, Respiratory Control, Studies Show