NWPF

News ArchivesRead News

A 3-D Light Switch for the Brain

Tuesday November 20, 2012

www.photonics.com - CAMBRIDGE, Mass., Nov. 19, 2012 — A new tool that delivers precise points of light to living brain tissue in three dimensions could one day help treat Parkinson’s disease and epilepsy; it could even aid in the understanding of consciousness and how memories form.

Biologists and engineers at MIT developed the three-dimensional “light switch” using a technique that manipulates neurons with light, known as optogenetics. The method, only a few years old, sensitizes select brain cells to a particular color of light. By illuminating precise areas of the brain, scientists can selectively activate or deactivate the individual neurons that have been sensitized.

Optogenetics allows scientists to play a more active role in probing the brain’s connections, to fire up one type of cell or deactivate another and then observe the effect on a behavior, such as quieting a seizure. “You can see neural activity in the brain that is associated with specific behaviors, but is it important?” said Ed Boyden, a synthetic biologist at MIT and a pioneer in the field of optogenetics. “Or is it a passive copy of important activity located elsewhere in the brain? There’s no way to know for sure if you just watch.”

ntire circuits within the brain can now be explored with the new 3-D tool, which so far has been tested on mice. The 3-D array is precise enough to activate a single kind of neuron, at a precise location, with a single beam of light; previous techniques did not have the same precision. Probes delivering electricity to the brain could manipulate neurons, but they cannot target individual kinds of cells, Boyden said. Drugs can turn neurons on or off, but not on such a quick time scale, nor with such a high degree of control.

A previous version of Boyden’s device looked like a needle-thin probe with light-emitting ports along its length; these ports allowed scientists to manipulate neurons along a single line. The new tool contains up to 100 of these probes — each just 150 µm across — in a square grid, so the device looks like a series of fine-toothed combs laid next to each other with their teeth pointing in the same direction.

By adding a third dimension to the light-delivery capabilities, researchers can make any pattern of light they want within the volume of a cubic centimeter of brain tissue, using a few hundred independently controllable illumination points. The implants do not cause any discomfort because the brain lacks pain receptors.

Neurons in the brain are not naturally responsive to light, so scientists sensitize these cells with molecules called opsins, light-detecting proteins naturally found in bacteria and algae. Different colors of light turn on different flavors of opsin.

An individual neuron’s response depends on the type of opsin it was sensitized with and the color of light used to illuminate it. This gives neuroscientists an unprecedented level of control over individual neurons in the brain, and could be used to study the memory process, the difference between being awake and asleep, and the connections between memory and emotion.

A better understanding of the brain may lead to another benefit: therapy. If particular types of cells malfunction in a particular disease, scientists may be able to use a modified 3-D array as a neural prosthesis that could help treat the neurological condition. For example, light could be used to stop overactive cells from firing, alleviating the uncontrollable muscle action of Parkinson’s disease. Implants that correct hearing deficiencies also are being explored with this method.

While the new device is effective in bringing light to the brain, challenges must be overcome before optogenetics can be used for medical therapy, Boyden said. Scientists are still investigating whether the body will detect the opsin proteins as foreign molecules and reject them; gene therapy also will have to prove itself if neurons are to be effectively sensitized with opsin.

The findings appeared in Optics Letters.

For more information, visit: www.mit.edu

Recent News

Aug 24 - Study Details Process Involved in Parkinson’s Disease
Aug 20 - Two proteins work together to help cells eliminate trash; Parkinson's may result
Aug 17 - Scientists visualize critical part of basal ganglia pathways
Aug 17 - VA benefits office seeks all vets exposed to Agent Orange
Aug 12 - New, rapid dementia screening tool rivals 'gold standard' clinical evaluations
Aug 11 - Strolling in Seaside, fighting Parkinson's
Aug 11 - Scientists probing molecular origins of Parkinson's disease highlight two proteins
Aug 11 - Could Chocolate Help To Ease Parkinson’s Disease?
Aug 10 - Take 2: Why Seattle should try to replicate Spokane’s 3-on-3 Hoopfest success
Aug 10 - Book Review: A voyage into Parkinson’s disease, led by patient and journalist
Aug 10 - Parkinson's could be slowed with existing drug
Aug 7 - Opinion: Why modern life is making dementia in your 40s more likely
Aug 3 - Software Turns Smartphones into Tools for Medical Research
Jul 31 - Innovative Technology Using Dragonflies Might Offer Insights Into Human Brain Function
Jul 27 - Low-dose lithium reduces side effects from most common treatment for Parkinson's disease
Jul 27 - Opinion: Parkinson's disease creating class of workers who fear for their jobs: PennLive letters
Jul 22 - Parkinson's: Diabetes drug may offer clue to treatment
Jul 19 - Alzheimer's Drugs in the Works Might Treat Other Diseases, Too
Jul 17 - Parkinson's disease may be treatable with antimalaria drugs
Jul 16 - Virtual research studies feasible