News ArchivesRead News

Light-sensitive protein to study Parkinson's disease

Tuesday October 30, 2012

news-medical.net - Introducing a light-sensitive protein in transgenic nerve cells... transplanting nerve cells into the brains of laboratory animals... inserting an optic fibre in the brain and using it to light up the nerve cells and stimulate them into releasing more dopamine to combat Parkinson's disease...

These events may sound like science fiction but they are soon to become a reality in a research laboratory at Lund University in Sweden.

For the time being, this is basic research but the long term objective is to find new ways of treating Parkinson's disease. This increasingly common disease is caused by degeneration of the brain cells producing signal substance dopamine.

Many experiments have been conducted on both animals and humans, transplanting healthy nerve cells to make up for the lack of dopamine, but it is difficult to study what happens to the transplant.

"We don't know how the new nerve cells behave once they have been transplanted into the brain. Do they connect to the surrounding cells as they should, and can they function normally and produce dopamine as they should? Can we use light to reinforce dopamine production? These are the issues we want to investigate with optogenetics", says Professor Merab Kokaia.

Optogenetics allows scientists to control certain cells in the brain using light, leaving other cells unaffected. In order to do this, the relevant cells are equipped with genes for a special light-sensitive protein. The protein makes the cells react when they are illuminated with light from a thin optic fibre which is also implanted in the brain. The cells can then be "switched on" when they are illuminated.

"If we get signals as a response to light from the host brain, we know that they come from the transplanted cells since they are the only ones to carry the light-sensitive protein. This gives us a much more specific way of studying the brain's reactions than inserting an electrode, which is the current method. With an electrode, we do not know whether the electric signals that are detected come from "new" or "old" brain cells", explains Merab Kokaia.

The work will be conducted on laboratory rats modelling Parkinson's disease. The transplanted cells will be derived from skin from an adult human and will have been "reprogrammed" as nerve cells. Merab Kokaia will be collaborating with neuro-researchers Malin Parmar and Olle Lindvall on the project. The three Lund researchers have received a grant of USD 75 000 from the Michael J. Fox Foundation, started by actor Michael J. Fox and dedicated to Parkinson's research.

The light-sensitive protein is obtained from a bacterium, which uses light to gain energy. Since it is not a human protein, the safety checks will be extra strict if the method is to be used on humans.

"We know that this is long term research. But the methodology is interesting and it will be exciting to see what we can come up with," says Merab Kokaia.

Source Lund

Recent News

Nov 22 - A caregiver's story: Living and loving through the slow process of dying
Nov 19 - Testosterone cause of sex differences in the occurrence of Parkinson’s disease, new research suggests
Nov 18 - New strategy reduces side effects in Parkinson's treatment
Nov 14 - Opinion: The never-ending tests of Parkinson's disease
Nov 13 - Parkinson’s disease: A new tool for diagnosis
Nov 10 - Parkinson's Disease Drug May Be Useful For Delaying, Preventing Blindness In Older Population
Nov 9 - Microsoft VP’s diagnosis fuels employees’ heartfelt efforts to help others
Nov 6 - Lewy body dementia: unrecognized and misdiagnosed
Nov 5 - Gait difficulties in Parkinson's linked to new blood vessels in brain
Oct 30 - Special Section: Enabling Technologies for Parkinson’s Disease Management
Oct 27 - Scientists discover a 'switchboard' of molecules that protect against Parkinson's disease
Oct 26 - Dancing improves mobility and quality of life in people with Parkinson's
Oct 23 - The amazing woman who can smell Parkinson’s disease — before symptoms appear
Oct 20 - Personal Essay: The deviousness of dementia
Oct 19 - Mechanism that 'melts' protein clumps may lead to new Parkinson's treatments
Oct 19 - Researchers find that stem cell treatment may reduce cognitive impairment related to dementia with Lewy bodies
Oct 17 - Cancer Drug Helps Parkinson's Patients
Oct 12 - Researchers identify immune gene that can prevent Parkinson's disease and dementia
Oct 12 - Blog Post: An Alert, Well-Hydrated Artist in No Acute Distress
Oct 7 - This month, a brain surgery will be broadcast on live TV for the first time ever