NWPF

News ArchivesRead News

Parkinson's protein causes disease spread in animal model, suggesting way disorder progresses over time in humans

Wednesday April 18, 2012

Penn researchers have shown that brain tissue from a Parkinson's disease mouse model , as well as synthetically produced disease protein fibrils, injected into young, symptom-free PD mice led to spreading of PD pathology.

Medical Press - Last year, researchers from the Perelman School of Medicine at the University of Pennsylvania found that small amounts of a misfolded brain protein can be taken up by healthy neurons, replicating within them to cause neurodegeneration. The protein, alpha-synuclein (a-syn), is commonly found in the brain, but forms characteristic clumps called Lewy bodies, in neurons of patients with Parkinson's disease (PD) and other neurodegenerative disorders. They found that abnormal forms of a-syn called fibrils acted as "seeds" that induced normal a-syn to misfold and form aggregates.

In earlier studies at other institutions, when fetal nerve cells were transplanted into the brains of PD patients, some of the transplanted cells developed Lewy bodies. This suggested that the corrupted form of a-syn could somehow be transmitted from diseased neurons to healthy ones.

Now, in a follow-up study published in the Journal of Experimental Medicine, the team, led by senior author Virginia M.-Y Lee, PhD, director of the Center for Neurodegenerative Disease Research and professor of Pathology and Laboratory Medicine, showed that brain tissue from a PD mouse model , as well as synthetically produced a-syn fibrils, injected into young, symptom-free PD mice led to spreading of a-syn pathology. By three months after a single injection, neurons containing abnormal a-syn clumps were detected throughout the mouse brains. The inoculated mice died between 100 to 125 days post-inoculation, out of their typical two-year life span.

"We think the spreading is via white-matter tracks through brain neural network connections," explains Lee. "This study will open new opportunities for novel Parkinson's disease therapies."

"It's like a biochemical chain reaction," says first author Kelvin C. Luk, Ph.D., research associate, in the CNDR. Once inside the confines of a neuron, the misfolded a-syn recruits normally shaped a-syn protein that is present in the cell, causing them to eventually misfold. This occurs along the axons and dendrites (neuronal extensions that reach other neurons), leading to a dramatic accumulation of the abnormal protein. The misshapen a-syn then invades other neurons when they reach the synapse, the small space between neurons.

This transmission process is remarkably similar to what is seen in prions, the protein agents responsible for conditions such as transmissible spongiform encephalopathies ( mad cow disease). However, the researchers are quick to caution that there is no evidence that Parkinson's or any related neurodegenerative diseases is either infectious or acquired.

The accumulation of misfolded proteins is a fundamental pathogenic process in neurodegenerative diseases, but the factors that trigger aggregation of a-syn are poorly understood.

The Penn team saw that misfolded a-syn propagated along major central nervous system pathways, reaching regions far beyond injection sites. What's more, they showed for the first time that synthetically produced a-syn fibrils are sufficient to initiate a vicious cycle of Lewy body formation and transmission of the misfolded a-syn in mice.

The study demonstrates just how the Parkinson's disease protein can spread in a patient's brain in terms of uptake into a healthy neuron, expansion within the cell, and finally release to a neighboring neuron.

"Knowing this mechanism allows for possible immunotherapies to interrupt the chain reaction by stopping the mutant protein from spreading at the synapse," says Lee.

"Shedding light on how α-synuclein contributes to Parkinson's disease and related Lewy body disorders is of significant interest both for understanding these diseases and developing potential treatments," said Beth-Anne Sieber, Ph.D., of the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health. "This study provides evidence for the progressive, pathological spread of α-synuclein through the brain."

Provided by University of Pennsylvania School of Medicine (news : web)

http://medicalxpress.com/news/2012-04-parkinson-protein-disease-animal.html

Recent News

Jul 7 - Parkinson’s Patients Have a Higher Risk of Developing Melanoma — and Vice Versa, Study Finds
Jun 27 - The rogue protein behind Parkinson’s disease may also protect your gut
Jun 26 - Do Statins Increase Risk of Parkinson’s Disease? Some Researchers Think So
Jun 22 - A Confused Immune System Could Be Behind Parkinson's Disease
Jun 21 - Predicting cognitive deficits in people with Parkinson’s disease
Jun 20 - Gym offers classes in noncontact boxing for Parkinson’s patients
Jun 19 - Human Limitations Could Prevent Us From Advancing in Science. AI Could Help.
Jun 13 - Brain Cell Transplants Are Being Tested Once Again For Parkinson's
Jun 12 - Smell Test May Sniff Out Oncoming Parkinson's and Alzheimer's
Jun 8 - Smartphones Track Motor Function in Parkinson's Disease
Jun 8 - GKC Enrolls First Patient in Personal KinetiGraph Trial as Part of NPF’s Parkinson’s Outcomes Project
Jun 8 - Low-fat dairy intake may raise Parkinson's risk
Jun 6 - Patient Voices: Parkinson's Disease
Jun 1 - World-First Trials Have Been Launched to Treat Parkinson's And Blindness With Embryonic Stem Cells
Jun 1 - LIFE Shared This Remarkable Parkinson's Disease Story in 1959.
May 24 - Survival Rates Differ Widely in Parkinson's, MSA, Lewy Bodies
May 22 - Discovery may offer hope to Parkinson's disease patients
May 15 - Study offers answers on life expectancy for people with Parkinson's disease, Lewy body dementia
May 5 - Parkinson's in a dish: Researchers reproduce brain oscillations
May 5 - ‘Hunger Hormone’ Could Help Treat Parkinson’s Disease