NWPF

News ArchivesRead News

Nanotech May Tap Into Your Mind

Thursday February 25, 2010

New sensors built using nanotechnology could read and write information directly into the brain.

Discovery News - THE GIST:

The research is likely to provide relief for people with Parkinson's disease or overcoming stroke.
There are a number of hurdles to overcome, such as adverse immune responses and possible faults with the machinery.

Telecommunications researchers in Japan are attempting to create electronic sensors that can not only receive information from the brain, but could manipulate our neural pathways.

While the concept might conjure science-fiction images of half-human, half-machine cyborgs, Dr Keiichi Torimitsu of Nippon Telegraph and Telephone (NTT), says the research is more likely to provide relief for people with Parkinson's disease or overcoming stroke.

Torimitsu presented his team's work on the development of bionic, or bio-mimetic, brain sensors at this week's International Conference on Nanoscience and Nanotechnology (ICONN) in Sydney.

"Establishing connections between the brain and electrical instruments is important for understanding how the brain works and for controlling neural activity," says Torimitsu, who heads NTT's Molecular and Bioscience Group.

"To develop some kind of devices or interfaces with the brain that would make it possible to transmit our information, sending it through the telecommunication pathways to another person or device such as a computer -- that is the goal."

A neural interface would be a significant achievement in the rapidly advancing realm of bionic technology, which includes devices such as the cochlear ear implant.

Torimitsu is working on creating a nano-scaled implant comprising a nano-electrode coated with an artificial membrane that mimics the receptor proteins found on the surface of brain cells, such as glutamate and GABA receptors -involved in increasing and inhibiting brain activity.

Interactions between the receptors and neurotransmitters naturally generate electrical activity. Carefully placed nano-electrodes receive the neurotransmissions providing an instant, accurate electrical reflection of what is occurring, which can be read by an external device.

Torimitsu hopes it would not only monitor activity, but also interact in the connections between neurons known as the synapses.

Ideally, he says, the device would use a biological energy source such as glucose.

"If we could use those proteins on a nano-electrode to generate electrical responses, we could achieve the bio-mimicry of responses."

Torimitsu admits there are a number of hurdles to overcome such as adverse immune responses and possible faults with the machinery. He says at this stage it's unlikely that healthy people would volunteer to have the devices implanted.

But, Torimitsu says it has great medical potential for stroke sufferers and people with Parkinson's disease where brain activity could be controlled.

The Japanese team is working with several researchers in Australia to refine the concept and devise applications for the technology.

Torimitsu has been working with Dr Simon Koblar of the University of Adelaide's Centre for Molecular Genetics of Development, looking at how to apply the technology for the treatment of stroke sufferers.

He is also about to commence working with the University of Wollongong's Intelligent Polymer Research Institute, which works at the forefront of bionics.

Director of the Institute, Professor Gordon Wallace, says one of the goals is to improve the interface with cochlear implant.

He says Torimitsu's work - a meeting of telecommunications technology and biological knowledge -- shows why it makes it a very exciting time to be doing such research.

"People are starting to realize all around the world that there are lots of tools that we can use that we already have at our disposal to make this field progress very quickly," says Wallace.

Recent News

May 30 - Smell tests, biomarkers and colon biopsies: New approaches to early identification of Parkinson’s disease
May 29 - Woman battling Parkinson's disease to try out for 'American Ninja Warrior'
May 20 - Book Review: Aging in the Key of Humor
May 19 - Press Release: The Michael J. Fox Foundation for Parkinson's Research Joins Multinational Critical Path for Parkinson's Consortium
May 19 - Congress reaches deal to overhaul chemical regulation
May 16 - Lifestyle: Why Parkinson's disease won't stop me rowing across the Pacific
May 16 - Many biomarkers for PD fail to inform on progression
May 10 - Parkinson's Cell Transplant Shows Good Reinnervation at 24 Years
May 9 - Parkinson's causes his body to freeze up. Only one thing gets him moving again.
May 7 - Growing art installation gathers stories of living with Parkinson's
May 5 - New technique can provide better cell transplants against Parkinson's disease
May 2 - What's Good For The Heart Is Good For The Brain
Apr 29 - Press Release: FDA approves first drug to treat hallucinations and delusions associated with Parkinson’s disease
Apr 28 - Dopamine-making neurons can be chemically controlled in animal model of Parkinson's
Apr 25 - Lifestyle: Dating with Disease
Apr 25 - Scientific breakthrough in fight against Parkinson's and Alzheimer's
Apr 20 - Breakthrough Parkinson's disease blood test
Apr 15 - Living with Parkinson's
Apr 12 - Tissue biomarker for dementia with Lewy bodies and Parkinson’s disease
Apr 11 - Yoga for Every Body: Experts say yoga can ease pain and improve mobility for people with neurologic conditions