NWPF

News ArchivesRead News

Breakthrough technology for testing Alzheimer’s and Parkinson’s drugs

Thursday February 18, 2010

news@Northwestern - In a breakthrough development for early drug research, Northeastern University scientists are now able to test, in real time, the impact of new drugs being developed to treat neurodegenerative diseases like Alzheimer’s and Parkinson’s.

A patented new imaging technology developed by Northeastern’s Center for Translational NeuroImaging (CTNI) enables researchers to produce highly accurate data without resorting to traditional preclinical testing methods. Those methods involve euthanizing laboratory animals at different stages of the study to assess disease progression and the effectiveness of the drug.

“Animal imaging is crucial in early drug discovery, but the use of anesthesia creates an artificial situation that can mask true drug activity,” said Craig Ferris, CTNI director and professor of psychology and pharmaceutical sciences. “Studying awake animals leads to improved drug safety evaluations and data accuracy.”

Ferris noted the testing they are now able to perform at CTNI maximizes accuracy and leads to improved drug development processes for pharmaceutical and biotechnology companies that are working to treat central nervous system diseases, including Alzheimer’s and Parkinson’s diseases.

The center’s imaging-based preclinical testing is performed under the aegis of a new business venture, called Ekam Imaging, Inc., founded by a team that includes Ferris and Graham Jones, professor and chair of the department of chemistry and chemical biology at Northeastern.

The technology has spawned eight patents focused on the imaging of animals and a new method for tagging drugs using microwave-mediated organic synthesis technology. This procedure allows injected compounds to be more accurately tracked and evaluated for efficacy.

Additionally, the center uses advanced data-analysis techniques, including three-dimensional brain “atlases” used for data visualization, and imaging models of various disease conditions.

“The advantages of our technology give researchers the ability to provide information and analysis to drug companies that enable them to make more informed go/no-go decisions on their drug development programs,” added Ferris. “It will help reduce the time to market for new therapeutics and lower the overall cost of drug development.”

Recent News

Aug 22 - Parkinson's Disease Could Be Diagnosed Through Eye Check, Mice Help Researchers In Further Study
Aug 22 - Machine learning to unlock Parkinson's disease mystery
Aug 21 - Cognitive control plays major role in Parkinson’s Gait
Aug 15 - 'I've Never Felt Constrained': After Parkinson's Diagnosis, Chestnut Hill Man Turns To Drumming
Aug 11 - Virtual reality and treadmill training could help prevent falls in older adults
Aug 9 - New laboratory model replicates early phase of Parkinson's before onset of motor symptoms
Aug 8 - Marshall University Scientists Develop A New Approach For Parkinson’s Disease Therapy
Aug 5 - Cambuslang woman diagnosed with Parkinson's at 42 is set to trek through Alps
Aug 4 - Active Music Therapy May Be Beneficial in Parkinson's
Aug 1 - Mini-Brains? Scientists Grow Rice Grain-Sized Brains to Aid Parkinson’s Research
Jul 30 - Lab method sheds light on how genetic mutations cause inherited Parkinson's disease
Jul 27 - Indicators of Parkinson's disease risk found in unexpected places
Jul 24 - Parkinson's: Mutant gene interaction may pave the way for new treatments
Jul 22 - Boxing training used to fight against Parkinson's disease
Jul 17 - Stem cell treatment breakthrough could cure Parkinson’s patients
Jul 14 - Cancer drug shows early promise for Parkinson's disease
Jul 13 - Opinion: Dividing the Caregiving Responsibilities Between Siblings
Jul 12 - Researchers make advance in possible treatments for Gaucher, Parkinson’s diseases
Jul 11 - Parkinson’s Head Trauma Link Looks Even Stronger
Jul 7 - Penn students’ start-up XEED puts wearables to work against Parkinson’s disease