NWPF

News ArchivesRead News

Synergistic Interaction Enhances Pathogenesis of Parkinson's Disease

Thursday December 24, 2009

Science Daily - Scientists have identified a synergistic interaction that disrupts normal intracellular transport mechanisms and leads to the accumulation of neuron-damaging clumps of protein associated with Parkinson's disease (PD), a neurodegenerative disorder that is characterized by a specific loss of neurons in the midbrain and brainstem. The research, published by Cell Press in the December 24 issue of the journal Neuron, identifies a new potential therapeutic option for preventing PD-associated neuropathology.

Mutations in the alpha--synuclein (α-syn) and Leucine-rich repeat kinase (LRRK2) genes have been linked with inherited and sporadic forms of PD and previous research has shown that accumulation of cytotoxic α-syn protein inside of neurons represents a key step in the pathogenesis of PD. "Although earlier studies have suggested interplay between α-syn and LRRK2, a synergistic interaction in the pathogenesis of PD has not been established," explains senior study author Dr. Huaibin Cai from the Laboratory of Neurogenetics at the National Institutes of Health in Bethesda, Maryland.
In order to systematically investigate whether LRRK2 and α-syn act synergistically to potentiate PD, Dr. Cai and colleagues generated and characterized several types of transgenic mice that overexpressed different combinations of a PD-related alpha-syn mutation along with various forms of normal and PD-associated LRRK2. The researchers found that although overexpression of LRRK2 alone did not cause neurodegeneration, excess LRRK2 significantly accelerated the progression of neuropathological abnormalities in transgenic mice expressing PD-related α-syn.
Overexpression of LRRK2 disrupted key structures and mechanism that play a role in transporting proteins inside of the neurons. Importantly, genetic disruption of LRRK2 maintained normal intracellular transport and reduced the accumulation of α-syn, thereby significantly delaying the progression of PD pathology in the PD α-syn transgenic mice. These findings suggest that LRRK2 exacerbates the abnormal intracellular accumulation of α-syn.
"We have uncovered a novel function for LRRK2 in regulating the intracellular trafficking and accumulation of α-syn in neurons and our results suggest that excessive amounts of LRRK2 or its mutants may result in abnormal neuron-damaging accumulation of α-syn protein," concludes Dr. Cai. "It is possible that inhibition of LRRK2 expression may provide an applicable therapeutic strategy to ameliorate α-syn-induced neurodegeneration in PD or other related neurodegenerative diseases."

Recent News

Jun 13 - Brain Cell Transplants Are Being Tested Once Again For Parkinson's
Jun 12 - Smell Test May Sniff Out Oncoming Parkinson's and Alzheimer's
Jun 8 - Smartphones Track Motor Function in Parkinson's Disease
Jun 8 - GKC Enrolls First Patient in Personal KinetiGraph Trial as Part of NPF’s Parkinson’s Outcomes Project
Jun 8 - Low-fat dairy intake may raise Parkinson's risk
Jun 6 - Patient Voices: Parkinson's Disease
Jun 1 - World-First Trials Have Been Launched to Treat Parkinson's And Blindness With Embryonic Stem Cells
May 24 - Survival Rates Differ Widely in Parkinson's, MSA, Lewy Bodies
May 22 - Discovery may offer hope to Parkinson's disease patients
May 15 - Study offers answers on life expectancy for people with Parkinson's disease, Lewy body dementia
May 5 - Parkinson's in a dish: Researchers reproduce brain oscillations
May 5 - ‘Hunger Hormone’ Could Help Treat Parkinson’s Disease
May 3 - Antibiotic doxycycline may offer hope for treatment of Parkinson's disease
May 1 - Impulse Control Disorders in Parkinson's Disease: Building Physician, Patient Awareness
Apr 28 - Does Parkinson’s disease begin in the gut?
Apr 28 - New empathy-creating digital device could be revolutionary for caregivers
Apr 24 - Treating Depression With Deep Brain Stimulation Works—Most of the Time
Apr 24 - Parkinson’s disease shows links to depression
Apr 21 - TOLEDO Trial: Apomorphine Infusions Reduce 'Off' Time in Parkinson's Disease
Apr 21 - New drug provides long-awaited breakthrough for Parkinson's psychosis