NWPF

News ArchivesRead News

How the pathology of Parkinson's disease spreads

Thursday July 30, 2009

Neuron-to-neuron transmission of a-synuclein may cause alpha-synuclein aggregates to propagate

EurekAlert - Accumulation of the synaptic protein alpha-synuclein, resulting in the formation of aggregates called Lewy bodies in the brain, is a hallmark of Parkinson's and other related neurodegenerative diseases.

This pathology appears to spread throughout the brain as the disease progresses. Now, researchers at the University of California, San Diego School of Medicine and Konkuk University in Seoul, South Korea, have described how this mechanism works. Their findings – the first to show neuron-to-neuron transmission of alpha-synuclein – will appear in the Proceedings of the National Academy of Sciences (PNAS) on July 29.

"The discovery of cell-to-cell transmission of this protein may explain how alpha-synuclein aggregates can pass to new, healthy cells," said first author Paula Desplats, project scientist in UC San Diego's Department of Neurosciences. "We demonstrated how alpha-synuclein is taken up by neighboring cells, including grafted neuronal precursor cells, a mechanism that may cause Lewy bodies to spread to different brain structures."

This insight will impact research into stem cell therapy for Parkinson's disease. "Our findings indicate that the stem cells used to replace lost or damaged cells in the brains of Parkinson's disease patients are also susceptible to degeneration," said Eliezer Masliah, MD, professor of neurosciences and pathology at UC San Diego School of Medicine. "Knowledge of the molecular basis of the intercellular transmission of alpha-synuclein may result in improved stem-cell based therapies with long-lasting benefits, by preventing the grafted cells to uptake α-synuclein or by making them more efficient in clearing the accumulated alpha-synuclein ."

In a large proportion of Parkinson's disease cases, the aggregation of alpha-synuclein progresses in a predictable pattern – from the lower brainstem, into the limbic system and eventually to the neocortex, the part of the brain responsible for higher level cognitive functions. The hypothesis of disease progression by neuron-to-neuron transmission of alpha-synuclein that encouraged this study was supported by findings of two separate reports in 2008. In these studies, autopsies of deceased Parkinson's patients who had received implants of therapeutic fetal neurons 11 to 16 years prior revealed that alpha-synuclein had propagated to the transplanted neurons.

Collaborating with South Korean researcher Seung-Jae Lee, the UC San Diego researchers first looked at neural precursor cells in culture, co-culturing them with neuronal cells expressing alpha-synuclein . After 24 to 48 hours, the aggregated alpha-synuclein was evident in the precursor cells – results suggesting cell-to-cell transmission. Using specific inhibitors, the research team also discovered that alpha-synuclein is transmitted via endocytosis, the normal process by which cells absorb proteins from the extracellular media by engulfing them within their cell membrane. Blockage of the endocytic pathway resulted in lesser accumulation of alpha-synuclein

Additionally, the researchers found that failure of the quality-control systems of the cell contributes to the observed accumulation of alpha-synuclein in recipient cells. This is due to inhibited activity of cell particles called lysosomes, which would usually degrade and remove aggregates – resulting in their increased formation.

Next, the team tested to determine if alpha-synuclein could be transmitted directly from host to grafted cells in a mouse model of Parkinson's disease. Brains of the mouse model were grafted with fresh, healthy stem cells. Within four weeks, cells containing Lewy body-like masses were quite common, supporting the cell-to cell transmission mechanism.

Recent News

Nov 17 - 'Moving Day' participant is not letting young-onset Parkinson's disease stop him
Nov 17 - Focused ultrasound shows promise for treating Parkinson's tremor
Nov 17 - New research to target air pollution as a potential trigger for Parkinson’s
Nov 17 - This device will let you feel what it's like to suffer from Parkinson's
Nov 10 - How does Parkinson's disease influence depression?
Nov 10 - House votes to repeal ObamaCare's Medicare cost-cutting board
Nov 10 - Microsoft shows off watch that quiets Parkinson's tremors
Nov 3 - Utah group battling Parkinson's disease with boxing
Nov 3 - UVA-LED STUDY EXAMINES POTENTIAL OF SOUND WAVES TO MANAGE PARKINSON’S DISEASE
Oct 27 - Herbicide's link to Parkinson's disease
Oct 27 - NTU Singapore, KAIST scientists discover new mechanism that causes Parkinsonian symptoms
Oct 27 - 70,000 Washingtonians face higher insurance costs after Trump order, officials say
Oct 18 - Brain disconnections may contribute to Parkinson's hallucinations
Oct 18 - Fighting Parkinson's disease through dance
Oct 17 - Scientists Identify Structure of PINK1, Key Parkinson’s-protective Protein
Oct 17 - Diabetes drug cuts Parkinson's risk by 28 percent, study finds
Oct 10 - Advances in Brain Pacemaker Reduces Tremors, Helps Parkinson's Sufferers Live a More Normal Life
Oct 10 - Medical History Could Help Predict Parkinson's Disease Risk Long Before Diagnosis
Oct 3 - Changes in Olfactory Bulb Explain Loss of Smell in Early Stages of Parkinson’s Disease, Study Finds
Oct 3 - Sleep Disturbances May Worsen Motor Symptoms in Parkinson’s Disease, Study Suggests