NWPF

News ArchivesRead News

New research program tackles Parkinson’s disease

Tuesday December 19, 2006

Jordana Lenon

December 14, 2006(University of Wisconsin System) - A new research collaboration at the University of Wisconsin-Madison aims to move promising new therapies for Parkinson’s disease from primates to patients.

Based at the Wisconsin National Primate Research Center and named the Preclinical Parkinson’s Disease Research Program, the collaboration became official in November. Joseph Kemnitz, professor of physiology and Primate Center director, is the program’s executive director. Renowned Parkinson’s disease expert Marina Emborg, senior scientist at the Primate Center and in the department of anatomy, is scientific director. "Our goal is to hasten discoveries that will lead to new therapies for Parkinson’s disease, with an emphasis on cell and gene-based therapies," says Kemnitz.

Through the new program, the Primate Center is poised to become the country’s centralized resource for Parkinson’s disease research using nonhuman primate models, especially macaques, Kemnitz says. Program collaborators and funding agencies that will help develop the necessary laboratory and animal resources at the Primate Center include WinCon, a biotechnology company in Nanning, Guangxi, China; researchers at the Beijing Institute of Geriatrics, and an anonymous foundation.

"Macaques are regarded by many as the most useful model for Parkinson’s research," Kemnitz says. "These collaborators chose the Wisconsin National Primate Research Center because we have a well established infrastructure for conducting research using nonhuman primates, and UW-Madison has a broad range of expertise directly relevant to this program."

That expertise lies in the UW-Madison’s renowned capabilities in brain imaging technology, stem cell biology and clinical biomanufacturing. Researchers from the Primate Center, Waisman Center, School of Medicine and Public Health, School of Pharmacy, and other campus entities are already developing promising Parkinson’s therapies based on embryonic stem cell derivations, trophic (nutritive) factors, compounds called thiazolidenediones, deep brain stimulation and other treatment avenues.

"We’re committed to finding a cure for Parkinson’s disease," Emborg says.

Recent News

Nov 17 - 'Moving Day' participant is not letting young-onset Parkinson's disease stop him
Nov 17 - Focused ultrasound shows promise for treating Parkinson's tremor
Nov 17 - New research to target air pollution as a potential trigger for Parkinson’s
Nov 17 - This device will let you feel what it's like to suffer from Parkinson's
Nov 10 - How does Parkinson's disease influence depression?
Nov 10 - House votes to repeal ObamaCare's Medicare cost-cutting board
Nov 10 - Microsoft shows off watch that quiets Parkinson's tremors
Nov 3 - Utah group battling Parkinson's disease with boxing
Nov 3 - UVA-LED STUDY EXAMINES POTENTIAL OF SOUND WAVES TO MANAGE PARKINSON’S DISEASE
Oct 27 - Herbicide's link to Parkinson's disease
Oct 27 - NTU Singapore, KAIST scientists discover new mechanism that causes Parkinsonian symptoms
Oct 27 - 70,000 Washingtonians face higher insurance costs after Trump order, officials say
Oct 18 - Brain disconnections may contribute to Parkinson's hallucinations
Oct 18 - Fighting Parkinson's disease through dance
Oct 17 - Scientists Identify Structure of PINK1, Key Parkinson’s-protective Protein
Oct 17 - Diabetes drug cuts Parkinson's risk by 28 percent, study finds
Oct 10 - Advances in Brain Pacemaker Reduces Tremors, Helps Parkinson's Sufferers Live a More Normal Life
Oct 10 - Medical History Could Help Predict Parkinson's Disease Risk Long Before Diagnosis
Oct 3 - Changes in Olfactory Bulb Explain Loss of Smell in Early Stages of Parkinson’s Disease, Study Finds
Oct 3 - Sleep Disturbances May Worsen Motor Symptoms in Parkinson’s Disease, Study Suggests