News ArchivesRead News

Parkinson’s Mutation Stunts Neurons

Thursday November 30, 2006

24 Nov 2006(Medical News Today) - Mutations in a key brain protein known to underlie a form of Parkinson’s disease (PD) wreaks its damage by stunting the normal growth and branching of neurons, researchers have found. They have pinpointed the malfunction of the protein made by mutant forms of the gene called LRRK2 and how it affects neurons, ultimately leading to their death. The loss of dopamine-producing neurons is central to the pathology of PD, and loss of connections among such neurons is an early feature of the PD disease process.

The researchers, Asa Abeliovich and colleagues at Columbia University, said their findings could lead to animal models for studying the form of PD and ultimately to new treatments for the disease. They reported their findings in the November 22, 2006, issue of the journal Neuron, published by Cell Press.

The researchers launched their study of LRRK2 because other scientists had identified mutations in the gene in an inherited form of PD that mimics the clinical and pathological features of the common sporadic form of the disease. LRRK2 stands for "leucine-rich repeat kinase-2," which means that the LRRK2 protein is an enzyme called a kinase--a biochemical switch that activates other proteins by attaching a molecule called a phosphate to them.

In their experiments, when the researchers generated mutant forms of the enzyme, they discovered that the mutants showed higher-than-normal enzymatic kinase activity compared to the normal version. When they introduced the mutant forms into cultures of neurons, they saw a reduction in the growth and branching of the neurons. Such growth is critical for the neurons to establish and maintain connections with one another in the brain’s neural circuitry. The researchers also found that cultured neurons with mutant LRRK2 enzymes showed reduced survival.

The researchers analyzed the function of the mutant proteins, establishing that it was the "triggering" kinase segment of the protein that was central to the enzyme’s defective function.

The pathology of PD caused by mutated LRRK2 also includes formation of abnormal deposits, or "inclusions," in the neurons. Similarly, Abeliovich and his colleagues found that the mutant LRRK2 proteins they created also caused such inclusions in the brain cell cultures.

What’s more, when the researchers introduced the mutant form of LRRK2 into the adult rat brain, they saw the same stunting of growth of dopamine-producing neurons and production of abnormal inclusions. Finally, when they introduced the mutant LRRK2 into embryonic rat brain, they saw a reduction of length and branching of neuronal wiring during brain development.

The researchers wrote that their findings offer "a useful animal model for early LRRK2-associated disease." They concluded that their techniques of introducing the mutated gene could lead to a primate model for the form of PD. "These cellular and animal models may promote the discovery of effective therapeutics for LRRK2-associated disease," they wrote.

Recent News

Nov 22 - A caregiver's story: Living and loving through the slow process of dying
Nov 19 - Testosterone cause of sex differences in the occurrence of Parkinson’s disease, new research suggests
Nov 18 - New strategy reduces side effects in Parkinson's treatment
Nov 14 - Opinion: The never-ending tests of Parkinson's disease
Nov 13 - Parkinson’s disease: A new tool for diagnosis
Nov 10 - Parkinson's Disease Drug May Be Useful For Delaying, Preventing Blindness In Older Population
Nov 9 - Microsoft VP’s diagnosis fuels employees’ heartfelt efforts to help others
Nov 6 - Lewy body dementia: unrecognized and misdiagnosed
Nov 5 - Gait difficulties in Parkinson's linked to new blood vessels in brain
Oct 30 - Special Section: Enabling Technologies for Parkinson’s Disease Management
Oct 27 - Scientists discover a 'switchboard' of molecules that protect against Parkinson's disease
Oct 26 - Dancing improves mobility and quality of life in people with Parkinson's
Oct 23 - The amazing woman who can smell Parkinson’s disease — before symptoms appear
Oct 20 - Personal Essay: The deviousness of dementia
Oct 19 - Mechanism that 'melts' protein clumps may lead to new Parkinson's treatments
Oct 19 - Researchers find that stem cell treatment may reduce cognitive impairment related to dementia with Lewy bodies
Oct 17 - Cancer Drug Helps Parkinson's Patients
Oct 12 - Researchers identify immune gene that can prevent Parkinson's disease and dementia
Oct 12 - Blog Post: An Alert, Well-Hydrated Artist in No Acute Distress
Oct 7 - This month, a brain surgery will be broadcast on live TV for the first time ever